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Abstract
A numerical simulation study of the density dependence (ρ = 2.2–4.0 g cm−3)

of the high energy collective dynamics in vitreous silica at mesoscopic
wavevectors (Q = 1–18 nm−1) is reported. The dynamic structure factor,
S(Q, ω), and the density of states, ρ(E), have been determined in the harmonic
approximation via the system eigenvalues and the eigenvectors, in turn obtained
by the direct diagonalization of the dynamical matrix. The BKS interaction
potential employed is capable of reproducing the experimentally observed
excess of states (boson peak), and its density dependence. The numerical
simulation also indicates a strong density dependence of the transverse
excitation dispersion relation, �T(Q), at large Q. Specifically, �T(Q) is found
to flatten at high Q to a value that increases with increasing density. The parallel
between the density dependent flattening of �T(Q) and the density dependence
of the boson peak suggests that the latter feature arises from the high Q portion
of the transverse branch. This hypothesis is in line with both the interpretation
by Elliott and co-workers (Taraskin et al 2001 Phys. Rev. Lett. 86 1255), who
assign the boson peak to a phenomenon in glass reminiscent of the lowest energy
Van Hove singularity in the companion crystal, and the Buchenau et al (1986
Phys. Rev. B 34 5665) assignment of the boson peak to the localized hindered
rotation of SiO2 tetrahedra.
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1. Introduction

Insulating disordered solids, when compared to their crystalline counterparts, exhibit some
common peculiarities in their low temperature thermal properties and low energy spectroscopic
features [1, 2], in particular: (i) a larger specific heat at temperatures up to ≈1 K, ascribed
to tunnelling processes [3, 4]; (ii) a much smaller thermal conductivity, which also shows a
plateau in the temperature range ≈1–10 K [1]; (iii) a quasi-elastic light scattering and neutron
scattering intensity; and, most important, (iv) an excess of modes in the vibrational density
of states, known as the boson peak (BP). An unambiguous understanding of the origin of
these extra modes, and of their possible relation with other reported anomalies, is still lacking,
in spite of the extensive research effort primed by the pioneering work of Buchenau et al
[5] and continued by many authors [6–14]. No definite conclusion has yet been drawn as
to the nature of the vibrational eigenvectors of the modes responsible for the BP. In fact,
according to different authors, they are either spatially localized [5, 7], spatially delocalized
and propagating [6, 9, 13], or spatially delocalized but diffusive in character [15]. Even more
important, we still do not completely understand why disorder should accumulate vibrational
eigenvalues in the same energy region, in such a broad variety of chemically and physically
different materials. Some recent theoretical works have been devoted to this subject, and
among them we recall:

(i) the work of Elliott and co-workers, who assigned the BP in glasses to the lowest energy
van Hove singularity of the corresponding crystal [14, 16, 17];

(ii) the work of Grigera et al, who interpreted the BP as the precursor of the dynamical
instability expected in a disordered structure as a function of density [18]; and

(iii) the work of Götze and Mayr [19] and that of Schilling et al [20], who obtained a spectral
feature recalling the BP within a mode-coupling-like description of the high frequency
dynamics of a model glass.

In the specific case of v-SiO2 at normal density, the most widely accepted explanation
is that the BP originates from the piling up of modes near the first van Hove singularity
of the transverse acoustic vibrational branch [14, 16]. These modes should mainly involve
relative rotations of almost rigid SiO4 tetrahedra, as pointed out early on by Buchenau and
co-workers [5]. In addition to the ambient pressure data, useful information is available for
v-SiO2 at higher densities, obtained both from in situ measurements on samples under pressure
and from permanently densified samples. In general, densification results in a shift of the BP
towards higher energies and in a simultaneous decrease of its intensity [21–24]. In addition to
the experimental data, the behaviour of the BP with density has been successfully reproduced
by a series of simulations [25–27]. Recently, very accurate inelastic neutron scattering (INS)
measurements on densified vitreous silica (d-SiO2) have confirmed these effects [28–30]. In
densified samples, the BP lies at higher energies with respect to normal density, and its intensity
is lower. Moreover, in densified samples the inelastic signal in the BP energy range shows
a more marked dependence on the scattering wavevector Q, as regards its intensity and peak
position.

We present here simulation results on v-SiO2 at different densities which, when compared
with the existing experimental data, can help in clarifying the origin and the nature of the excess
modes, as well as the intensity and shift effects on the BP as a function of density. Specifically,
we find a qualitative change in the shape of the transverse acoustic branch when the density is
changed: while at the lowest (ambient) density it shows a linear dispersion for Q < 8 nm−1

(�T(Q) ≈ vT Q) and a flattening above this value at h̄�(Q) ≈ 20 meV, at the highest density
studied the dispersion relation becomes linear over the whole Q range, reaching values as high
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as 60 meV. By comparing this behaviour with the experimental observation that, on increasing
the density, in vitreous silica the BP undergoes a blue-shift and becomes less and less intense,
we suggest that the extra modes which pile up in the BP region have a transverse acoustic
nature. Our results quantitatively support (i) Elliott and co-workers’ proposal [14, 17] that the
BP is connected to the lowest van Hove singularity of crystalline quartz, and (ii) the Buchenau
et al finding [5] that the modes at the BP are local rotations of SiO4 tetrahedra.

2. Simulation details

The systems investigated consist of 680 SiO2 units (N = 2040 ions), enclosed in cubic boxes
of different lengths (from L = 3.1359 nm, corresponding to ρ = 2.2 g cm−3 for the glass
at room pressure, down to L = 2.5693 nm corresponding to a density of 4.0 g cm−3), with
periodic boundary conditions. The ions interact through the BKS [31] two-body potential;
the long range interaction was treated by the Ewald sum technique. As has already been
demonstrated, this potential reproduces quantitatively the high frequency dynamics of vitreous
silica [32]. The glass configuration at room pressure was obtained by standard MD methods for
lowering the temperature down to 300 K, starting from a well equilibrated liquid configuration
at T = 6000 K; a conjugate gradient geometrical minimization on the potential energy
hypersurface was subsequently performed, for an accurate location of the minimum. Such
a minimum configuration was in turn taken as the starting point for generating a series of
compressed systems. At each compression step, the box size was scaled by ≈1.5% and the
system was allowed to relax, after which the new minimum configuration was searched for
by the conjugate gradient method. This procedure was repeated until the final density of
4.0 g cm−3 (corresponding to a sample under a hydrostatic pressure of about 35 GPa [21])
was reached. A complete study of the structural and dynamical changes occurring during the
compression will be presented elsewhere. We focus here on the changes in the high frequency
dynamics that take place as the density is increased.

The vibrational dynamics in the minimum configurations was computed in the harmonic
approximation by diagonalizing the dynamical matrix, to obtain the eigenvalues (ωp) and
eigenvectors (ep(i)) of the pth normal mode (p = 1–3N). From these quantities all vibrational
characteristics can be derived. In particular, we have computed the dynamic structure factor
S(Q, ω) as well as the longitudinal (L) and transverse (T) current spectra (Cη(Q, ω)) which,
in the one-excitation approximation, are given by

Sαβ(Q, ω) = KBT Q2√
Mα Mβ

∑
p

EL
p(α, β; Q)

1

ω2
p

δ(ω − ωp)

Cη

αβ(Q, ω) = KBT√
Mα Mβ

∑
p

Eη
p(α, β; Q)δ(ω − ωp)

(1)

where η ∈ {L, T}, α, β indicate Si and O, and Eη
p(Q) is the spatial power spectrum of the

(longitudinal or transverse) component of the eigenvectors:

EL
p(α, β; Q) = 1√

Nα Nβ

Nα∑
i∈α

Nβ∑
j∈β

[Q̂ · ē p(i)][Q̂ · ē p( j)]eiQ̄·(R̄i −R̄ j )

ET
p(α, β; Q) = 1√

Nα Nβ

Nα∑
i∈α

Nβ∑
j∈β

[Q̂ · ē p(i)] × [Q̂ · ē p( j)]eiQ̄·(R̄i −R̄ j ).

(2)

Here Q̂ = Q̄/|Q| and Ri is the equilibrium position of the i th particle.
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The harmonic and one-excitation approximations, used to calculate the dynamic quantities,
have been shown to give good agreement with the experimental spectra [9], indicating that the
contribution from anharmonicity or from more elusive local motions (for example, that of the
two-level systems whose detailed description is fundamental for the explanation of the low
temperature properties) are irrelevant in the frequency region investigated.

Once the partial dynamics structure factors or current spectra have been calculated, we
analyse the ‘experimental’ quantities, i.e. their combinations that appear in a (coherent) neutron
scattering experiment:

SN(Q, ω) =
∑
αβ

bαbβ Sαβ(Q, ω)

/∑
αβ

bαbβ (3)

and in an inelastic x-ray scattering experiment:

SX(Q, ω) =
∑
αβ

fα(Q) f ∗
β (Q)Sαβ(Q, ω)

/∑
αβ

fα(Q) f ∗
β (Q) (4)

where bα is the (coherent) thermal neutron scattering length for atomic species α and fα(Q)

is its atomic form factor, a quantity that is equal to Zα (the atomic number) in the Q → 0
limit. It is worth noting that, for the specific case of vitreous silica, as the ratio Mα/Zα is the
same for oxygen and silica, the x-ray weighted dynamics structure factor in the small Q limit
coincides with the density–density correlation function. In the following we will present the
x-ray weighted dynamics quantity.

3. Discussion

3.1. Current spectra

Usually, the dynamical data obtained via simulation are reported showing the dynamic structure
factor, S(Q, ω), because this procedure has the advantage of being directly comparable to the
experimental spectra obtained, for instance, from standard INS and inelastic x-ray scattering
(IXS) measurements. On the other hand, the longitudinal current spectra, that turn out to be
related to the dynamic structure factor (see equation (1)) via CL(Q, ω) = ω2 S(Q, ω)/Q2,
are much more useful when one is interested in characterizing the vibrational spectra. In
fact, as can be seen from equation (1), each current spectrum taken at a fixed ω directly
gives the spatial power spectrum of the eigenvectors at the selected frequency. Thus one
can, for example, distinguish between ‘plane waves’—characterized by a sharp peak in
Q space resulting from Fourier transforming ep(i) ≈ exp(ik̄ p · R̄i )—and localized modes,
where the fact that ep(i) is non-zero only for few nearby atoms gives rise to a broad spectrum
in Q space. Moreover, in analysing the experimental data, usually one performs the fitting
procedure directly on the measured quantity (i.e. the S(Q, ω)), but—on plotting the dispersion
relation �(Q)—it is the maximum of the current spectra (and not of S(Q, ω)) that is reported.
In this respect, it is worth recalling that in the celebrated DHO model (the appropriate model for
the dynamic structure factor in the memory function approach when the structural relaxation
process is frozen [33] as in the case of harmonic glasses)

SDHO(Q, ω) = S(Q)

π

�2(Q)	(Q)

(ω2 − �2(Q))2 + 	2(Q)ω2
(5)

it is the parameter �(Q) that represents the excitation frequency. Straightforward algebra
shows that �(Q) is the maximum of ω2 SDHO(Q, ω) and not of SDHO(Q, ω). The difference
between �(Q) and the maximum of SDHO(Q, ω) (located at

√
�2(Q) − 	2(Q)/2) is small
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Figure 1. An overview of computed neutron weighted current spectra of v-SiO2 at three different
densities (from left to right): ρ = 2.2 g cm−3 (P = 0 GPa), ρ = 2.8 g cm−3 (P = 0 GPa
densified); ρ = 4.0 g cm−3 (P = 35 GPa). Top: longitudinal currents; bottom: transverse
currents. The current spectra have been divided by Q2 for visualization purposes. In the greyscale
maps, the black region correspond to high values of the current spectra, the white region corresponds
to zero.

for small values of 	(Q), but becomes important in those cases where the high Q (and thus
high 	(Q)) dynamics is studied.

The computed current spectra, for both longitudinal and transverse dynamics, are shown
in figure 1 (upper and lower panel, respectively) as a contour-map plot for v-SiO2 at
ρ = 2.2, 2.8, 4.0 g cm−3. The most evident feature is that in the longitudinal currents a
periodicity is present, even if much less evident than for a crystal. The same feature is present
in the transverse ones, but with a longer quasi-period which extends beyond the limit of the
figure.

As discussed by Taraskin and Elliott [16] and in [27] this difference is due to the fact that
the longitudinal dynamics is affected by the average height of the SiO4 tetrahedron, which is
the main structural unit of v-SiO2, while the transverse vibrations are sensitive to the average
height of the SiO4 tetrahedron decorated with oxygen atoms. In the low Q longitudinal
spectrum, in addition to the quasi-periodic pattern, two readily observable features are present
in the two lowest density samples, which consist of protruding peninsulas, nearly parallel to
the Q axis, centred at about 20 and 100 meV. These features have been interpreted [16] as
a trace of the vibrational dynamics of the cristobalite structure (the crystalline counterpart of
v-SiO2), which shows in that energy range flat dispersion bands. It should be noted that the
plots of figure 1 are shown as a function of the modulus of the wavevector, which is a relevant
quantity for glasses, thus losing all information on the Q direction. If this convention were also
used in representing the dispersion curves of a crystal, different Q directions in the Brillouin
zone would superimpose giving qualitatively the same effect as in figure 1. In the Q–E range
between 5 and 15 nm−1 and 10 to 25 meV (where the flat band is observed in the longitudinal
currents), a much more evident flattening is present in the transverse currents. This coincidence
has suggested the interpretation that the flattened band in the longitudinal currents arises from
a spilling of transverse dynamics into the longitudinal one, due to disorder [16, 27, 34].
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Figure 2. Selected examples of longitudinal (full curves)
and transverse (dashed curves) current spectra at the
Q values, indicated in nm−1, for the sample at ρ =
2.2 g cm−3.

Figure 3. Selected examples of longitudinal (full curves)
and transverse (dashed curves) current spectra at the Q
values indicated (in nm−1) for the highest density sample
(ρ = 4.0 g cm−3).

In figure 2 we report longitudinal and transverse current spectra at selected Q values
for the uncompressed sample (ρ = 2.2 g cm−3). For Q values larger than about 8 nm−1,
both CL(Q, ω) and CT(Q, ω) show two distinct excitation maxima, and this double-excitation
structure becomes more and more evident with increasing Q values. The excitation at higher
energy disperses with Q and is observed at all Q values in the longitudinal current spectra,
while it shows up as a weak shoulder in the transverse current spectra only at Q > 10 nm−1. In
agreement with previous findings [9, 16, 32], we assign this feature to the longitudinal sound-
like branch. The behaviour of the low energy excitation is in some sense complementary: it is
always present in the transverse current spectra, while it appears in the longitudinal currents
only at Q > 8 nm−1. At small Q, the low energy peak disperses linearly with a sound
velocity of ≈3800 m s−1 (appropriate for the transverse sound modes), and becomes almost
non-dispersing at Q > 8 nm−1. We will call this low energy feature—which is the main
feature in the transverse current spectra—the transverse acoustic mode.

The presence of the signature of transverse dynamics in the longitudinal current spectra,
and vice versa, is only apparently surprising. Indeed, the polarization character of the modes
(which is better and better defined with increasing wavelength, i.e. when the vibration ‘sees’
the medium as an elastic continuum) becomes ill defined at short wavelengths. This mixing
phenomenon has already been observed in the simulated [35] and experimental [36] spectra
of liquid water. The mixing phenomenon lies at the basis of the growth of peaks associated
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Figure 4. Main maxima of the longitudinal (open symbols) and transverse (crossed symbols)
current spectra, for three different densities. Squares: ρ = 2.2 g cm−3 (P = 0 GPa); diamonds:
ρ = 4.0 g cm−3; circles ρ = 2.8 g cm−3 (P = 0 GPa densified).

with the opposite polarization modes in the current spectra, and of the increased visibility of
these peaks with increasing Q values.

Spectra similar to those of figure 2, but for the sample at the highest density studied
(ρ = 4.0 g cm−3), are reported in figure 3. One can observe that the two current spectra
are now ‘pure’, and no evidence of wrongly polarized modes is present; moreover, and more
importantly, the T branch no longer shows a flattening. The maxima of the longitudinal and of
the transverse currents in the constant Q cuts are reported in figure 4 for three selected mass
densities.

In the starting configuration, ρ = 2.2 g cm−3, open and crossed squares of figure 4, the
main maxima relative to the longitudinal currents have a well defined dispersing character
up to very high energies (about 100 meV), while the transverse dispersion is linear at small
Q and at Q ≈ 7 nm−1 flattens at an energy ≈20 meV. The main maxima of the transverse
current remain centred, within the uncertainty, at the same energy at which the minor peak is
observed also in the longitudinal current spectra, whose intensity is roughly 50–80% of the
main feature. On increasing the density to 4.0 g cm−3, the local structure of the glass, which
at normal density consists of fourfold-coordinated Si ions, is almost completely replaced
by an octahedral one (typical of stishovite, i.e. the crystalline form of silica stable at high
densities). As a consequence of this local structure transformation, the dynamical properties
also change and this can be seen in figure 4. Both longitudinal and transverse maxima follow
a nearly linear dispersion law up to the highest reported Q and no flattening of the transverse
branch is observed. The important result which emerges from figure 4 is that the ‘transverse’
branches in low and intermediate density samples, and at large Q values, flatten to an energy
value which increases with increasing density (≈15 meV at room conditions, 2.2 g cm−3, and
Q = 10 nm−1).

The density of vibrational states (g(E)), associated with the branches which flatten, will
obviously have an excess of modes with respect to the Debye behaviour at these energies,
reminiscent of the van Hove singularity of the corresponding crystal [14]: the boson peak.
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Figure 5. (a) Dotted curve: INS density of states of v-SiO2; dash–dotted curve: Debye
approximation; full curve: vibrational excess, i.e. whole DOS minus Debye DOS; dashed curve:
density of states divided by E2. (b) As (a), but for the unpolarized Raman spectrum of v-SiO2.
Here the full line represents the density of states weighted by the Raman coupling function.

3.2. Boson peak

Experimentally, in v-SiO2 at room pressure, the excess of modes appears as a broad peak in the
plot of the Debye-normalized density of states g(E)/E2. It turns out to be centred at ≈5 meV
and to have a width of ≈5 meV. In order to establish a comparison between the simulation
results and the experimental data, it is important to stress that the presence of the 1/E2 factor
severely affects the appearance of the spectral distribution of the excess of states, by strongly
enhancing their low energy tail. Indeed, the true excess of states should be observed in the
difference between the actual density of states (g(E)) and its Debye approximation (gD(E)).
Therefore, the experimental determination of the actual shape of the vibrational excess implies
knowledge not only of the density of states, but also of the relative weight of the crystalline one,
or at least its Debye approximation. The density of states can be obtained from inelastic neutron
scattering data, and also, to a certain extent, from depolarized Raman data. The Debye density
of states can be independently estimated via Brillouin light scattering, while heat capacity
experiments give the appropriate normalization factors [5, 37]. The result of this procedure,
using literature data, is shown in figure 5. Here the INS-deduced g(E) is shown together with
the Debye contribution obtained via the knowledge of the low frequency (GHz range) L and T
sound velocities. The excess of states (the full line in the figure) is obtained by subtracting the
Debye DOS from the whole DOS, and the boson peak (i.e. the excess in g(E)/E2) is obtained
by dividing the latter quantity by E2. The most important message arising from figure 5 is that
the true excess of states is a very broad and featureless band centred at energies much higher
than 5 meV, i.e. the ‘energy’ usually associated with the boson peak. Actually, the observed BP
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lies on the low energy tail of the true excess of states, since the contribution of the remaining
high energy vibrations is almost suppressed by the 1/E2 factor. A similar effect is observed
also in the depolarized Raman spectra (lower panel of figure 5). Here one does not observe
directly the density of states, but this quantity weighed by the Raman coupling function [38].
A qualitatively similar behaviour is found even if the scattered intensity is somewhat deformed
by the Raman coupling function C(E).

Summing up, the conclusion that can be drawn from figures 5 and 4 (concerning the normal
density data) is that the excess of density of states accumulates in a broad region, certainly
covering the 10–20 meV region, which is almost coincident with the energy region where
the transverse branch flattens. Therefore, the analysis of the normal density data leads us to
hypothesize that the BP arises from the high Q portion of the transverse branch.

The quantitative difference between the position of the flattening of the transverse branch
as found in simulations (about 20 meV as in figure 4) and the maximum of the excess of states
derived experimentally (the broad band extending from 10 to 20 meV as in figure 5), can derive
from different causes:

(i) From the computational point of view, the discrepancy might be ascribed to the finite size
of our samples. It should be noted, however, that a simulation performed on 8016-atom
samples by Horbach et al [39] shows a flattening of the same branch at practically the
same energy (≈17 meV) as in the present work, so dramatic size effects are not expected9.

(ii) It should also be considered that because a phenomenological potential was used we cannot
guarantee that the dynamics is correctly reproduced, so the disagreement might after all
be simply due to the potential used.

(iii) The experimental density of states is obtained through some approximations, for instance
the incoherent approximation and the estimation of the multiphonon contribution for
neutron scattering and the shape of C(E) for Raman scattering.

(iv) In the simulations the excess states could be overestimated due to unphysical quenching
times currently used in molecular dynamics, as pointed out recently by Angell [40].

Nevertheless the semi-quantitative agreement between experiment and simulation is evident,
and suggests the conclusion that the modes responsible for the BP are due to the flattening of
the transverse dispersion curve.

This picture is in agreement with the recent theoretical work of Taraskin et al [14], who
associate the BP with the glassy counterpart of the lowest energy van Hove singularity of the
corresponding crystalline structure. In this respect, it is worth noting that the transverse acoustic
branch at Q larger than ≈8 nm−1 is the glassy counterpart of a transverse optic phonon branch
of α-quartz (almost flat at ≈4 THz, i.e. ≈16 meV). This branch, in the extended Brillouin zone
scheme which is more appropriate for disordered materials, is the extension of the transverse
acoustic branch [41]. According to Boysen et al [42], close to the M point of the α-quartz
Brillouin zone this branch is strongly temperature dependent, and its softening is responsible
for the α–β transition in quartz. More importantly, the atomic displacements induced by the
lattice modes of this branch in quartz, as determined in [41], are very similar to the frustrated
rotations of SiO4 tetrahedra which—according to Buchenau et al [5]—are in vitreous silica
the modes contributing to the BP. All this evidence speaks in favour of a transverse branch
origin of the boson peak.

9 In [39], the BP energy is determined by the maximum of the hump observed in the dynamical structure factor,
which is a different definition to the one adopted here, i.e. the maximum of the excess density of states. Indeed, the
dynamics structure factor (actually its highQ limit) compares directly with the density of states divided by ω2, while
the density of states itself compares directly with the highQ limit of the current spectrum.
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Figure 6. The vibrational density of states of v-SiO2 at different densities: full squares:
ρ = 2.2 g cm−3; full circles: ρ = 2.8 g cm−3; upward pointing triangles: ρ = 3.2 g cm−3;
downward pointing triangles: ρ = 4.0 g cm−3; open circles: compressed sample ρ = 2.8 g cm−3

(zero pressure after pressure cycle).

The present MD simulation work adds a further element in support of this point of view.
Indeed, the most stringent evidence as to the assignment of the BP to the flattening of the
transverse acoustic branch is provided by the behaviour of the high energy transverse dynamics
upon densification. Experimentally, it is observed that upon densification (i) the BP energy
shifts to higher energy and (ii) its intensity strongly decreases [24, 43, 44]. From our simulations
(see figures 4 and 7 for a more complete set of data), we observe that, on increasing the density,
the T branch for moderate density flattens at a higher energy with respect to the room pressure
sample, and then, upon further densification, no flattening is observed at all. This behaviour
parallels that of the calculated density of states as a function of the density, reported for selected
mass densities in figure 6. The low energy part of the total density of states shifts towards
higher frequencies and decreases in intensity with increasing mass density. As a consequence,
the BP strongly decreases in intensity and shifts to high energies [27].

In figure 7 we present the maxima of the transverse currents computed at several densities.
For the ρ = 2.2 g cm−3 sample, after a linear increase, a flattening of the transverse currents
is observed for Q values higher than 6 nm−1, at about 15–20 meV. This plateau progressively
shifts to higher energy, and eventually disappears with increasing density. For the highest
density sample it is no longer observed and only a linear dispersion relationship is present.
These latter observations, which are in excellent qualitative agreement with the experimental
findings [24, 43, 44], give decisive support to the assignment of the BP to the flattening of the
quasi-TA branch.

4. Conclusions

In conclusion, by studying the density dependence of the spectra of the transverse currents,
and by comparing them with the experimental mass density dependence of the boson peak
in vitreous silica, we propose that the BP itself could be due to quasi-transverse acoustic
modes, whose dispersion relation becomes Q independent at high Q, thereby giving rise to
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Figure 7. Lower panel: the maximum of the transverse current spectra computed at different
densities with increasing density. Diamonds, circles, triangles, and squares correspond to ρ = 2.2,
2.8, 3.2, and 4.0 g cm−3, respectively. Upper panel: the maximum of the transverse current
spectra measured at different densities with decreasing density. Downward pointing triangles,
circles, upward pointing triangles, and squares correspond to ρ = 2.4, 2.8, 3.2, and 4.0 g cm−3,
respectively. The crossed symbols refer to the zero-pressure realization, before and after the
pressure cycle.

an excess of modes with respect to the Debye behaviour. The whole picture presented here
reconciles different previous studies on the origin of the BP and yields a fully consistent
scenario: (i) the high Q part of the transverse acoustic branch in vitreous silica—which gives
rise to the BP—is the counterpart of a low lying transverse optical branch for α-quartz [41];
(ii) according to Boysen et al [42] the softening of this branch at the M point produces the α-
to-β transition; (iii) in agreement with (i) and (ii), and according to Taraskin et al [14, 17], the
BP arises from the softening of the lowest energy van Hove singularity of the corresponding
crystals; (iv) according to Dorner and co-workers [41] the eigenvectors of this branch for
quartz correspond to rotations of SiO4 tetrahedra; (v) finally, in agreement with (i) and (iv),
according to Buchenau et al [5] the modes contributing to the BP are hindered rotations of
SiO4 tetrahedra.
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[29] Foret M, Courtens E, Helen B, Rufflé B and Vacher R 2002 Phys. Rev. B 66 024204
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